12. R. Rauti, M. Musto, S. Bosi, M. Prato, L. Ballerini, Properties and behavior of carbon nano­

materials when interfacing neuronal cells: How far have we come?, Carbon N. Y. 143 (2019)

430–446.

13. H. Lee, T.K. Choi, Y.B. Lee, H.R. Cho, R. Ghaffari, L. Wang, H.J. Choi, T.D. Chung, N. Lu,

T. Hyeon, S.H. Choi, D.-H. Kim, A graphene-based electrochemical device with thermo­

responsive microneedles for diabetes monitoring and therapy, Nat. Nanotechnol. 11 (2016)

566–572.

14. B. Cho, M.G. Hahm, M. Choi, J. Yoon, A.R. Kim, Y.J. Lee, S.G. Park, J.D. Kwon, C.S. Kim,

M. Song, Y. Jeong, K.S. Nam, S. Lee, T.J. Yoo, C.G. Kang, B.H. Lee, H.C. Ko, P.M. Ajayan, D.H.

Kim, Charge-transfer-based gas sensing using atomic-layer MoS2, Sci. Rep. 5 (2015) 8052.

15. J. Jo, S. Kang, J.S. Heo, Y. Kim, S.K. Park, Flexible metal oxide semiconductor devices made

by solution methods, Chem. – A Eur. J. 26 (2020) 9126–9156.

16. C. Dagdeviren, S.W. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F.G. Omenetto,

Y. Huang, J.A. Rogers, Transient, biocompatible electronics and energy harvesters based on

ZnO, Small. 9 (2013) 3398–3404.

17. M. Pumera, A.H. Loo, And biosensing, Trends Anal. Chem. 61 (2014) 49–53.

18. Y.H. Joung, Development of implantable medical devices: From an engineering perspective,

Int. Neurourol. J. 17 (2013) 98–106.

19. H.-P. Phan, Implanted flexible electronics: Set device lifetime with smart nanomaterials,

Micromachines. 12 (2021) 157.

20. N.K. Nguyen, T. Nguyen, T.K. Nguyen, S. Yadav, T. Dinh, M.K. Masud, P. Singha, T.N. Do,

M.J. Barton, H.T. Ta, N. Kashaninejad, C.H. Ooi, N.T. Nguyen, H.P. Phan, Wide-band-gap

semiconductors for biointegrated electronics: Recent advances and future directions, ACS

Appl. Electron. Mater. 3 (2021) 1959–1981.

21. Z. Li, R. Yang, M. Yu, F. Bai, C. Li, Z.L. Wang, Cellular level biocompatibility and biosafety of

ZnO nanowires, J. Phys. Chem. C. 112 (2008) 20114–20117.

22. A.R. Rebelo, C. Liu, K.H. Schäfer, M. Saumer, G. Yang, Y. Liu, Poly(4-vinylaniline)/

polyaniline bilayer-Functionalized bacterial cellulose for flexible electrochemical bio­

sensors, Langmuir. 35 (2019) 10354–10366.

23. Y. Zhang, T. Pan, Z. Yang, Flexible polyethylene terephthalate/polyaniline composite paper

with bending durability and effective electromagnetic shielding performance, Chem. Eng. J.

389 (2020) 124433.

24. S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single

carbon nanotube, Nature. 393 (1998) 49–52.

25. Q. Wang, X. Pan, C. Lin, H. Gao, S. Cao, Y. Ni, X. Ma, Modified Ti3C2TX (MXene) nanosheet-

catalyzed self-assembled, anti-aggregated, ultra-stretchable, conductive hydrogels for

wearable bioelectronics, Chem. Eng. J. 401 (2020) 126129.

26. X.L. Feng, M.H. Matheny, C.A. Zorman, M. Mehregany, M.L. Roukes, Low voltage nanoe­

lectromechanical switches based on silicon carbide nanowires, Nano Lett. 10 (2010) 2891–2896.

27. R. Garg, S.K. Rastogi, M. Lamparski, S.C. De La Barrera, G.T. Pace, N.T. Nuhfer, B.M. Hunt,

V. Meunier, T. Cohen-Karni, Nanowire-mesh-templated growth of out-of-plane three-

dimensional fuzzy graphene, ACS Nano. 11 (2017) 6301–6311.

28. S. Salomon, J. Eymery, E. Pauliac-Vaujour, GaN wire-based Langmuir–Blodgett films for

self-powered flexible strain sensors, Nanotechnology. 25 (2014) 375502.

29. H. Wang, Z. Xie, W. Yang, J. Fang, L. An, Morphology control in the vapor-liquid-solid

growth of SiC nanowires, Cryst. Growth Des. 8 (2008) 3893–3896.

30. J.-H. Ahn, H.-S. Kim, K.J. Lee, S. Jeon, S.J. Kang, Y. Sun, R.G. Nuzzo, J.A. Rogers,

Heterogeneous three-dimensional electronics by use of printed semiconductor nanomater­

ials, Science . 314 (80) (2006) 1754–1757.

31. H.P. Phan, T. Dinh, T. Kozeki, T.K. Nguyen, A. Qamar, T. Namazu, N.T. Nguyen, D.V. Dao,

The Piezoresistive effect in top-down fabricated p-type 3C-SiC nanowires, IEEE Electron

Device Lett. 37 (2016) 1029–1032.

Semiconducting Nanostructured Materials

199